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Unmanned aerial vehicles (UAVs) perform important surveillance functions on the bat-
tlefield. When a set of fixed targets for surveillance is known a priori it is desirable to find
a minimum length tour subject to the kinematic constraints of the UAV and the terrain and
threat constraints of the environment. The UAV path planning problem can be reduced to
the traveling salesman problem (TSP) or the vehicle routing problem (VRP), both of which
are known to be NP-hard. The problem of finding an optimal tour subject to kinematic
constraints, the Dubins vehicle problem (DVP), is also NP-hard and several heuristics have
recently been proposed. In this paper several instances of the DVP are posed and solved
with a heuristic and the particle swarm optimization method. The particle swarm optimiza-
tion (PSO) results are compared to another standard optimization method, and the best
configurations found for these instances are reported.

I. Introduction

THE importance of autonomous vehicles in future military operations is generally recognized.1−3 These vehicles
include unmanned air vehicles (UAVs), unmanned ground vehicles (UGVs), and unmanned underwater vehicles

(UUVs) with varying levels of autonomy and mission complexity. Both UAVs and UGVs have prominent roles in
many planned military systems, and the control of multiple UAVs has been proposed as an AFOSR grand challenge.1

Some of the work on path planning for a fleet of UAVs4 has noted that, in the absence of kinematic constraints,
the problem can be reduced to the well known capacitated vehicle routing problem (CVRP). The inclusion of UAV
kinematic constraints has been addressed5,6 for a single stationary target and a single UAV using the Dubins set.7

Using optimal control, it can be shown that the Dubins set will produce the minimum time trajectory for moving
the UAV from an initial to a final configuration.8 Path planning for UAVs following a moving target has recently
been addressed9 using a more general kinematic model for the UAV and optimal control methods to determine the
acceleration and bank angle.A more complex path planning scenario has also been considered10 where environmental
factors, obstacles, and kinematic constraints were all considered for a single UAV.

Path planning for UAVs involves elements of both the traveling salesman (TSP) and vehicle routing problems
(VRP). If the mission is a surveillance tour, and the UAVs are to be recovered, the depot and its heading constraints
must be considered, and the problem is best modeled as a turn rate limited VRP. One of the most studied of the VRPs
is the vehicle routing problem with time windows. In the VRPTW the objective is to first minimize the number of
vehicles and then to minimize the length of the route plan. Recent heuristics for the VRPTW11,12 have shown good
performance against standard VRP benchmarks. To the best of this author’s knowledge, no one has yet added turn
rate constraints to a VRP.

If the mission is surveillance followed by the destruction of a fixed set of targets, then the UAVs are not recovered,
and the problem becomes one of finding the least number of vehicles and the set of paths for each such that each
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vertex is visited exactly once and each UAV path length is less than the UAV range. This problem is a generalization
of orienteering,13 which is closely related to TSP, and doesn’t require that UAVs follow a closed path. An advantage
of this model is that target values can be assigned when there are more targets to visit than there are vehicles available
to execute the surveillance plan, and the objective then becomes one of maximizing the collected target value with
the specified number of vehicles. Reference 13 has also shown good performance against standard benchmarks for
orienteering. To the best of this author’s knowledge, no one has yet added turn rate constraints to orienteering.

Other recent work in this area has considered multiple UAVs and has included the turn rate constraints.14,15 These
references treat the problem as a turn rate limited traveling salesman problem (kTSP) rather than a vehicle routing
problem by omitting the UAV depot, and they restrict the target spacing so that the resulting objective function for the
unknown headings will be continuous.8 In practice such a restriction can be problematic because the turn radius for
inexpensive loitering weapons, like LOCASS, can be large compared with the target spacing.5 Typical methods for
dealing with discontinuous multi-modal objective functions make use of evolutionary methods,16 but these methods
have not been applied to the problem.

The turn rate limited TSP has also been addressed,17,18 and some heuristics have been proposed and performance
bounds derived. One of these heuristics, called the alternating algorithm, was based on selecting alternate legs of the
TSP and filling in with the optimal Dubins paths. A few instances were presented in these references, but none of
these benchmarks were published.

In this paper an algorithm for the turn rate limited TSP is proposed and tested. The target spacing constraint used in
references 14 and 15 wasn’t used here. Instead, to cope with the discontinuous objective function, the particle swarm
optimization method19−21 was used to determine the heading at each vertex, and TSP order was used to determine
tour order. The algorithm is first tested on a simple benchmark where the length of the optimal tour can be tightly
bounded from above and below, and it is shown that the algorithm produces a result that satisfies these tight bounds.
The algorithm is then tested on four instances to show how it performs across a range of cases, from well separated
vertices to strings of closely spaced vertices. The results are compared to those obtained using a standard technique.
Following the practice common in the published studies of VRP and orienteering, these benchmarks are included to
facilitate comparison with other methods.

II. Dubins Tours
When the vehicle has kinematic constraints of the form

ẋ = V cos(θ)

ẏ = V sin(θ),
∣
∣θ̇

∣
∣ ≤ �

(1)

where (x, y) are position, V is velocity, and θ is heading, it can be shown8 that the minimum time vehicle control,
θ̇ (t), is a maximum effort (bang-bang) control. The vehicle turns at maximum rate left or right, or travels in a straight
line. These class paths were first worked out by Dubins.7 When the start and end point separation guarantees that
the construction circles will not intersect, the paths are all C-L-C (circle-line-circle) class paths.5 For closer spacing
it’s necessary to consider C-C-C (circle-circle-circle) class paths as well.6 There will be no more than six feasible
paths from (x1, y1, θ1) → (x2, y2, θ2), where (x, y) is the position and θ is the heading. Each of these paths is easy
to construct using simple co-ordinate transformations and standard geometric techniques. The Dubins path is then
the shortest of all these feasible paths. The UAV vehicle control changes at the tangent points along the Dubins path,
and is one of (+�, −�, 0) for a right turn, left turn, or straight path, respectively. A Dubins tour is composed by
concatenation of the Dubins paths around the vertices to form a closed tour.

A good test case for any algorithm that constructs a Dubins tour is obtained by placing a set of vertices on a circle
larger than the turn radius of the UAV.

It’s easy to see that the Dubins tour must lie between the circle and the inscribed polygon. The proof follows
by concatenating C-L-C paths between the vertices. Hence the circumference of the circle is an upper bound on
the length of the Dubins tour, and the length of the polygon, which is the TSP tour length, is a lower bound on
the length of the Dubins tour. Such a test case is shown for the algorithm proposed here in Fig. 1, where the
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Fig. 1 A test case for the DVP algorithm used here shows that TSP < DVP < 4π, as expected.

radius of the circle is four times the turn radius (0.5 n mile.) of the UAV. For 26 vertices, the DVP tour length
obtained by PSO is DVP = 12.5538. The TSP tour length is TSP = 26(4sin(360/52)) = 12.5358 n mile. Hence,
12.5358 < DVP < 4π = 12.566, as expected. Note that the vertex spacing is 0.482 n mile, well within the UAV turn
radius, and that, for this set of instances, TSP tour order is also correct for DVP. The Matlab routine “fmincon.m”
produced a tour length of 12.5432 n mile.

III. Particle Swarm Optimization
If the TSP tour order is accepted for an instance of DVP, the headings (θ1, . . . , θN) remain to be determined. The

results for PSO for a 10 vertex instance are presented in Fig. 2. The PSO results are compared to the results from a
MATLAB routine∗ in the optimization toolbox as shown in Fig. 2.

A. PSO Equations
Particle swarm optimization was first proposed by Kennedy and Eberhart,19 and several versions of PSO are

commonly used.20,21 The version implemented here is given by

v̄m,k = χ(v̄m,k−1 + c1 · r1(x̄m,best − x̄m,k−1) + c2 · r2(x̄gbest − x̄m,k−1))

x̄m,k = x̄m,k−1 + v̄m,k

(2)

where r1 and r2 are independent uniform random variables on [0, 1], χ is the contraction parameter, c1 and c2 are the
cognitive and social parameters, x̄m,k−1 is the mth particle position at the k − 1st generation, x̄m,best is the position at
which the mth particle found its shortest tour, x̄gbest is the position at which the global optimum (shortest tour over
all particles) was found, and v̄m,k−1 is the velocity of the mth particle at the k − 1st generation.

Each particle is an N-tuple of headings, and it’s necessary to keep the headings between −π and π as the swarm
evolves. The particle velocities were limited by |v̄m,k| ≤ Vmax. For the examples presented here,χ = 0.729, c1 = 2.05,
c2 = 2.05 and Vmax = 0.2π . The contraction parameter, cognitive parameter, and social parameter used here were
suggested in reference 21. In all cases there were 20 particles and the PSO was run for 200–300 generations. Using

∗ fmincon requires a continuous objective function, which cannot be guaranteed in this application. The number of function
evaluations and the number of iterations must be limited to keep this optimizer from getting trapped in an infinite loop.
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Fig. 2 PSO finds a tour of length 17.8 n mile. within 200 generations. The MATLAB routine “fmincon.m” finds a
tour of length 21 n mile. when initialized with the same headings.

the initialization and heading constraints suggested here, a DVP configuration that’s better than the “fmincon.m”
configuration is found within a few dozen generations.

B. Initialization and Heading Constraints
An efficient initialization of the particle swarm is obtained by first computing a preferred set of headings and then

adding independent random perturbations to initialize each particle position. The preferred headings are obtained
by marking vertices (i.e. set_heading(n) = TRUE in Table 1) in tour order that lie within the vehicle turn radius of
the next vertex in the tour. If only two consecutive vertices are found, the preferred heading at each is the heading
of the line that joins them. If a longer sequence of these marked vertices is found, the AA heuristic is applied. If
the vertex is unmarked (i.e. set_heading(n) = FALSE in Table 1), the preferred heading is set to the average of the
inbound and outbound headings in the TSP tour. Some pseudo code that performs this initialization is presented
in Table 1.
Unmarked vertices have an independent random variable uniform on [−π/2, π/2] added for each particle, but marked
vertices have an independent random variable uniform on [−φ, φ] added, where φ = π/8. Velocities were initialized
with independent random variables uniform on [−Vmax/2, Vmax/2]. In addition, for any marked vertex in a particle,
if the heading departs by more than φ from the preferred heading, that particle’s vertex heading is re-initialized.

IV. DVP Instances
Standard benchmarks available for VRPs use 25, 50, or 100 (or more) vertices, and are unsuitable for the current

study. For all instances considered in this section, vertices are generated independently and uniformly in a 5 by
5 n mile square. Random instances of this type are among the most difficult of the standard VRP instances. The cases
considered here use 10, 20, and 30 vertices. In every instance, the UAV turn radius is 0.5 n mile. The MATLAB
function “fmincon.m” was initialized in the same manner as the PSO, but no heading constraints were enforced.

C. Case One: 10 vertices
A 10 vertex instance is shown in Fig. 2. The best configuration found for this instance is presented in Table 2.
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Table 1 Pseudo code for the particle initialization.

if set_heading(n)==FALSE
preferred_heading(n) = average_heading;
alt = 0; %--Length of the string. Used in AA heuristic

else
if (set_heading(n-1)==FALSE)&(set_heading(n+1)==TRUE)

preferred_heading(n) = heading_to(n+1);
alt = 1;

elseif (set_heading(n-1)==TRUE)&(set_heading(n+1)==FALSE)
alt = alt + 1;
if mod(alt,2)==0

preferred_heading(n) = heading_from(n-1);
else

set_heading(n) = FALSE;
preferred_heading(n) = average_heading;
alt = 0;

end
alt = 0;

else
alt = alt + 1;
if mod(alt,2)==0

preferred_heading(n) = heading_from(n-1);
else

preferred_heading(n) = heading_to(n+1);
end

end
end

Table 2 Configuration of the best Dubins’ tour found for the instance
considered in Fig. 2.

10 Vertex Configuration (17.8073 n mile.)

Vertex X (n mile.) Y(n mile.) Heading (deg.)

1 4.4565 0.8813 8.8383
2 4.1070 2.0514 −172.2824
3 3.8105 2.0285 −186.3066
4 2.4299 3.6910 151.3849
5 1.1557 3.9597 179.4775
6 0.0925 4.5845 70.1655
7 2.2235 4.4682 62.2307
8 2.2823 4.6773 85.5215
9 3.0342 4.6091 −102.8277

10 4.7506 3.0772 −74.8803

D. Case Two: 20 well separated vertices
A 20 vertex example is shown in Fig. 3, where the TSP tour is 20.82 n mile long. The result from a heading

constrained PSO is also shown in Fig. 3. The heading constrained PSO finds a Dubins’ tour 32.41 n mile long within
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Fig. 3 A 20 vertex instance. The TSP tour is 20.82 n mile long. PSO finds a Dubins’ tour of length 32.41 n mile within
300 generations. fmincon finds a tour of length 40.19 n mile.

Table 3 Configuration of the best Dubins’ tour found for the instance
considered in Fig. 3.

20 Vertex Configuration (32.4122 n mile.)

Vertex X (n mile.) Y (n mile.) Heading (deg.)

1 2.2546 2.6035 59.1261
2 2.6256 3.1251 76.0952
3 2.4228 2.5158 −58.6703
4 3.3907 0.6873 −32.7905
5 3.6114 0.074 1.8497
6 4.4581 3.0811 31.9315
7 4.9582 3.4337 55.6368
8 4.1738 4.2999 −82.1229
9 3.829 3.4633 123.2313

10 3.6094 3.8303 115.0049
11 2.7879 4.2613 164.6853
12 1.1198 4.5729 −161.565
13 0.4101 4.4763 −146.64
14 0.1032 3.5817 −116.557
15 0.1898 2.5123 −28.7057
16 0.4761 2.3575 −42.6881
17 0.2292 1.31 −127.001
18 0.1103 0.7765 −81.6674
19 0.6836 0.4954 102.7089
20 1.6244 1.6344 45.7732

300 generations. This instance has well separated vertices so that theAA heuristic wasn’t applied during initialization.
The best configuration found for this instance is given in Table 3.

E. Case Three: 20 vertices with a string of close vertices
Another 20 vertex instance is shown in Fig. 4. For this instance there is a long string of marked vertices found in

the initialization step and the AA heuristic was applied. The PSO finds a Dubins tour of length 32.56 n mile within
300 generations. The configuration of this tour is shown in Table 4.
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Fig. 4 A 20 vertex instance. The TSP tour is 18.09 n mile long. PSO finds a Dubins’ tour of length 32.56 n mile within
300 generations. fmincon finds a tour of length 45.22 n mile.

Table 4 Configuration of the best Dubins’ tour found for the instance
considered in Fig. 4.

20 Vertex Configuration (32.5619 n mile.)

Vertex X (n mile.) Y (n mile.) Heading (deg.)

1 0.5957 1.71 79.93
2 1.7292 3.8088 51.29
3 1.8923 3.967 45.2844
4 1.3977 4.4162 −59.3095
5 2.6509 4.7029 9.2357
6 3.5148 4.1214 −60.6423
7 3.5958 3.9031 −65.7977
8 3.4787 3.8699 −127.972
9 3.1414 3.6344 −140.488

10 3.3053 3.4091 −62.228
11 4.3429 3.037 11.8537
12 4.9637 2.9113 −49.4784
13 3.7632 2.4994 145.8692
14 3.5765 1.5957 −0.8902
15 4.2256 0.8587 −96.576
16 2.1701 0.4299 56.9641
17 2.3091 1.5805 −148.322
18 2.048 1.3763 −154.097
19 1.0603 1.5468 154.0959
20 0.1011 1.0249 1.0363

F. Case Four: 30 well separated vertices
For 30 vertices, long strings of marked vertices are common due to the density of vertices in the target space. For

the instance shown in Figure 5 and Table 5, the vertices are well separated and the AA heuristic wasn’t used in the
particle initialization. As the target density increases, the particles are initialized near the headings found using the
AA heuristic.
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Fig. 5 A 30 vertex instance. The TSP tour is 23.76 n mile long. PSO finds a Dubins’ tour of length 39.85 n mile within
300 generations. fmincon finds a tour of length 60.09 n mile.

Table 5 Configuration of the best Dubins’ tour found for the instance
considered in Fig. 5.

30 Vertex Configuration (39.8499 n mile.)

Vertex X (n mile.) Y (n mile.) Heading (deg.)

1 1.1911 0.7115 −71.6412
2 1.2374 0.509 −70.7085
3 2.1711 0.2931 27.3418
4 2.7083 0.7542 77.8969
5 2.6155 1.2714 97.5068
6 2.7278 1.2912 −44.391
7 3.0369 0.9614 −28.7775
8 3.5959 0.8155 11.6599
9 4.0521 0.914 8.4693

10 4.1593 0.6179 −75.0998
11 4.8351 0.1563 18.1219
12 4.8802 1.7582 69.8832
13 3.5147 3.2198 99.2982
14 4.0037 4.7611 156.8801
15 3.3971 4.6369 −156.333
16 2.9884 4.3889 −140.407
17 2.929 3.2667 −105.478
18 2.885 2.8489 −92.4509
19 2.1726 3.1754 122.9362
20 1.7456 2.0322 −43.5484
21 1.2278 1.9087 101.0396
22 1.1101 2.3345 97.7063
23 0.9214 4.1212 147.0868
24 0.3907 4.1604 −161.54
25 0.0539 3.4127 −64.0537
26 0.2801 2.618 −80.7304
27 0.2546 2.0509 −116.599
28 0.1493 1.8902 −123.383
29 0.4396 0.7674 −27.5271
30 0.1343 0.1513 97.7949
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Fig. 6 A Dubins’ tour with no crossing paths for the 10 vertex instance presented in Fig. 2.

V. Conclusions
A heuristic that used TSP tour order along with a heading constraint heuristic and particle swarm optimization

to find vehicle headings was proposed and tested for the Dubins vehicle problem. Several instances of DVP were
examined and the best configurations found for 10, 20, and 30 vertices uniformly distributed within 25 n mile2

were reported. As expected, PSO outperforms “fmincon.m” from the MATLAB optimization toolbox due to the
discontinuous and multimodal nature of the objective function. These instances can be used for comparison with
other approaches to DVP. As the density of targets increases, the preferred headings used in the particle initialization
reduce to those found from the alternating algorithm (AA) heuristic.17

It is interesting to consider permutations of the TSP tour order after the PSO has completed its processing.
Currently, there is no reason to expect the TSP tour order to be optimal for large values of turn radius. For the
instance presented in Fig. 2 it is possible to remove the self-crossing in the path by exchanging vertices 1 and 2 in
the TSP tour order, as shown in Fig. 6. However, the tour length is not reduced by this permutation.

Adjusting tour order could shorten the tour length, and a heuristic that examines permutations near these crossings
might be worth trying. So far, a Dubins tour shorter than the 10 vertex tour presented in Table 2 hasn’t been found
for this instance. Some theoretical work on this problem has been reported in reference 18.
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